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(Fig. 3a). Applying the same computational technique to locate
and quantify effective spatial subdivisions, we find that removing
short-distance traffic has profound consequences for the spatial
structure and coherence of divisions. We consistently find three
independent modules that latitudinally split the US. As these three
modules remain largely spatially coherent, we conclude that
intermediate traffic inherits the role of short range mobility in
generating spatial coherence. Although the removal of short links
represents a substantial modification of the network, bootstrapping
the original network randomly by the same amount (see Text S1)
has little impact on the border structure depicted in Fig. 2d. We
conclude that short- to intermediate-distance mobility is a key
factor in shaping effective borders.

Comparison to Gravity Models. We also investigate
whether the observed pattern of borders can be accounted for
by the prominent class of gravity models [29–31], frequently
encountered in modeling spatial disease dynamics [31]. In these
phenomenological models it is assumed that the interaction
strength wij between a collection of sub-populations with
geographic positions xi, sizes Ni, and distances dij~Dxi{xjD is
given by
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Figure 2. Effective subdivisions and borders in the United States. (a) Subdivisions determined by maximizing modularity Q share similar
values of Q (top to bottom: Q~0:6807, 0:6808, and 0:6804, all in k~14 modules). In all maps the modules are spatially compact. Although these
solutions share features, they exhibit significant differences in the module structure. (b) Ensemble statistics of geographic subdivisions for a set of
N~1,000 partitions. The number of modules k in each subdivision is narrowly distributed around 13 (grey bars), and so are the conditional
distributions of modularity (superimposed whisker plots). The ensemble mean is Q~0:674+0:0026. (c) Distribution of the linear extensions of the 48
states (mean 329+125 km) and the geographic modules in the effective subdivision (644+215 km). (d ) Effective borders emerge from linear
superposition of all maps in the ensemble (blue lines). Intensity encodes border significance (i.e. the fraction of maps that exhibit the border). Black
lines indicate state borders. Although 44% of state borders coincide with effective borders (left pie chart), approximately 64% of effective borders do
not coincide with state borders. These borders are statistically significant features of the ensemble of high modularity maps, they partially correlate
with administrative borders, topographical features, and frequently split states. (e) Close-up on the Missouri region, showing the effective border
between Kansas City and St. Louis that divides the state. (f) Close-up on the Appalachian Mountains with corresponding border, which extends north
to split Pennsylvania. This border is the strongest in the map.
doi:10.1371/journal.pone.0015422.g002
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Figure 1. Partitioning of large European countries based on telephone call networks. Left column: Community detection (first level) of
telephone call networks of (A) France, (C) UK, (E) Italy. The black lines show the 22, 11, and 20 administrative regions (NUTS1 for UK, NUTS2 for the
other countries), respectively, the colored areas show the corresponding 21, 16, 22 level 1 regions found by applying the modularity optimization
algorithm on the country-wide phone call networks. All detected regions are cohesive although some of the distinct colors used may appear similar.
Right column: Community detection (second level) within all network partitions from the first level, of (B) France, (D) UK, (F) Italy. For visual clarity
here we present the second level communities grouped into first level communities in an exploded view. Colors of detected subregions only apply
inside their respective level 1 partitions, again all detected subregions are cohesive although some of the distinct colors used may appear similar. For
France we also show the official NUTS2 borders which considerably match well the second level partitioning.
doi:10.1371/journal.pone.0081707.g001
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Figure 2: The municipal borders (in black) and Livehoods for South Side.

they go to for entertainment, where they go for food,
where they go because they enjoy the walk.

The connection the algorithm discovered between these two
areas went both ways. As Jessica (a LH3 resident) explains
“there are some places in Polish Hill we hang out a lot that
feel more like our neighborhood.”

The South Side: The South Side Flats neighborhood of
Pittsburgh lies along the southern border of the Mononga-
hela River. The main business district in the South Side is
along Carson Street, which is one of the top destinations
for nightlife in the city, as it has a high density of bars and
restaurants. Moreover, occupying a large area on the eastern
end of the neighborhood, there is a recently built mixed-use
development called South Side Works consisting of an open
air shopping mall with national vendors, several office build-
ings, and luxury condos.

Our clustering algorithm split South Side Flats into four
Livehoods (see Figure 2). LH7 is the area along Carson be-
tween Liberty Bridge and 18th Street, LH8 is the area be-
tween 18th and 24th Street, and LH9 is the area east of 24th
Street. The fourth area, LH6 is a shopping plaza north of
LH8.

In our interviews, we found strong support of the Live-
hoods clustering for South Side. Particularly strong was the
evidence supporting the split between the western part of
South Side Flats (LH6, LH7 and LH8), and the eastern por-
tion around South Side Works (LH9). We asked every sub-
ject who was familiar with South Side to indicate any places
where they notice a “shift in feel,” and nearly all participants
indicated that South Side Works, which begins just to the
east of the Birmingham Bridge, is distinctly different from
the rest of South Side Flats.

When we showed the municipal borders of South Side
to Ashley, a 25 year old who works at a local radio sta-
tion, she was surprised, commenting “Oh! So that is just all
one big neighborhood. I would have definitely thought there

is a division near the Birmingham [Bridge].” Later, when
we showed the Livehoods mapping and asked her about the
boundary between LH8 and LH9, she exclaimed:

Ha! Yes! See, here is my division! Yay! Thank you al-
gorithm! ...I definitely feel where the South Side Works
and all of that is, is a very different feel.

This “different feel” around South Side Works was identified
by many of the subjects. Sara, a 30 year old video game
designer who lives and works in South Side describes South
Side Works as “more up-scale” and having “more chains”
than the western part of South Side, which she describes as
having more “individual stores.”

Although nearly everyone understood and could explain
the differences between LH8 and LH9, there was less agree-
ment about whether the split between LH7 and LH8 was
valid. For instance, Sara mentioned that the difference be-
tween LH8 and LH9 made sense to her, but she did not
know the difference between LH7 and LH8. On the other
hand, Kara, who has lived both on the western end of Car-
son (LH7) and on the more eastern parts (LH8) noted that it
feels “a bit more isolated” around 23rd making her feel “less
safe.” She elaborated:

Whenever I was living down on 15th Street [LH7] I
had to worry about drunk people following me home,
but on 23rd [LH8] I need to worry about people trying
to mug you... so it’s different. It’s not something I had
anticipated, but there is a distinct difference between
the two areas of the South Side.

As Kara notes, although the difference is not very promi-
nent, the division by the algorithm displays a subtle differ-
ence that can be attributed to the type of people and business
in each of these parts.

Moreover, those that did notice a shift between LH7 and
LH8 described the street as being narrower and the buildings
closer together in LH7. Zach, who is a 30 year old technol-
ogy consultant and who used to be a cab driver in Pittsburgh
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Figure 1: The municipal borders (black) and Livehoods for Shadyside/East Liberty (Left) and Lawrenceville/Polish Hill (Right).

Lawrenceville and Polish Hill: Lawrenceville, one of
Pittsburgh’s largest neighborhoods, had been going through
massive changes and development in recent years. Our inter-
viewees were conflicted about the cohesiveness of the area.
For some, it is one big neighborhood encompassing more
than 20 blocks whereas others notice distinct subsections
carrying different characteristics.

The city itself subdivides Lawrenceville into three differ-
ent municipal neighborhoods: Upper Lawrenceville, Cen-
tral Lawrenceville, and Lower Lawrenceville. And although
these areas are all connected by Butler street, the character
of each of them is different. As Daniel, a 43 year old resident
of Lawrenceville, explains:

The look isn’t different, but the vibe and the feel are
very different. Middle Lawrenceville from 40th un-
til the cemetery that is where the first people were
moving in and fixing up the area... And then, Lower
Lawrenceville, is kind of picking up right now and then
Upper Lawrenceville it’s been like the really rough area
with gangs and drugs.

Our algorithm found similar divisions, breaking the area
into three Livehoods with boundaries closely correspond-
ing to those of the municipal map (see Figure 1 Right). The
border between LH3 and LH4 was situated exactly on the
40th St. Bridge, the border between Lower and Cental Law-
erenceville. The division between LH4 and LH5 was placed
on 48th street, three blocks away from the municipal border
between Central an Upper Lawrenceville on 51st street.

We found strong evidence from our interviews supporting
the Livehood clusters based on factors such as property val-

ues, crime rates, business types, and general feel. As Clau-
dia, a 54 year old journalist, notes:

I think middle [Central] Lawrenceville is the most de-
sirable or well rooted. Where the better housing stock
is. LH3 is definately newer. LH5 pretty much was left
alone... There are parking lots and convenience stores
around 40th that when you hit those you think ‘I have
left something behind.’ And then you are in another
part of Lawrencevile because you passed a bridge and
there’s not a lot of connective tissue at some of these
intersections.
Several of the interviewees did not agree with the sep-

aration of Lower and Central Lawrenceville. For them,
the separation is arbitrary and it is based mainly on lo-
cal businesses’ interests. Since Lawrenceville was perceived
as a dangerous area, a group of business owners in Lower
Lawrenceville decided to brand the area as “LoLa” and mar-
ket it as a stand alone destination for unique shops and
restaurants.

Another point of interest is in the spilling of Lower
Lawrenceville into the adjacent neighborhood of Polish Hill
in LH3. At first glance, this grouping seems odd and not fea-
sible. Polish Hill is a very small neighborhood that is sepa-
rated from Lower Lawrenceville by train tracks and a bus
way in addition to geographic barrier of being located on an
hill. But this grouping seemed natural to Roger, a 47 year
old resident of Polish Hill who said:

I think it’s pretty accurate... I think that’s how some
of our residents identify with Lower Lawrenceville be-
cause of their activities and their perception. Where
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The geographical boundaries are finally defined by the Voronoi cell boundaries for which the258

two neighboring cells’ locations do not belong to the same community.259
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Measuring Partition Similarity261
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produced at scales s and s0 by community detection followed by smoothing. A partition is defined264

as a set of subsets of locations, it is thus included in P(V ).265

Let us define a function µP (i, j) that takes the value 1 if both i and j belong to the same subset266

of a partition P , 0 otherwise:267

µP (i, j) =

⇢
1, if 9X 2 P such that i, j 2 X
0, otherwise

(2)

We can then define the similarity of Ps and Ps0 as the ratio between the number of pairs of268

locations in V that have the same value of µ for both Ps and Ps0 (i.e. they are classified similarly269

at scales s and s0), and the total number of possible location pairs:270

�(V, Ps, Ps0) =
|{(i, j) 2 V 2, i 6= j, µPs(i, j) = µPs0 (i, j)}|

�|V |
2

� (3)

Intervals of Similar Scales271

The above � metric allows us to compare graph partitions for each percentile against every other272

percentile. An immediate application is visual inspection, by generating heatmaps as the ones show273

in figure 1. A central question to the research being presented in this article is whether partitions274

Ps change smoothly as s increase, or if there are clear discontinuities. The heatmaps indicate quite275

clearly that the discontinuities do exist.276

To identify the breakpoints in partition similarity we introduce another metric, somewhat277

similar to the concept of modularity in graphs – albeit even simpler. This metric measures interval278
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size) and the maximum similarity between consecutive partitions in di↵erent intervals. The higher283

the �, the greater the similarity between partitions in the same interval compared to the worst284

case similarity between partitions on both sides of a breakpoint between consecutive intervals.285

Using this metric, we define a simple algorithm that iteratively adds breakpoints until � can286

no longer be improved. We define a minimum interval size of 5 to avoid isolating noisy outliers. In287

practice, the minimum interval only has an e↵ect on the two cities, for which the very final scales288

are indeed quite noisy.289
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For a given interval I, the natural scale sI is the percentile of I with the partition that is the most291
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condition is not triggered.257

The geographical boundaries are finally defined by the Voronoi cell boundaries for which the258

two neighboring cells’ locations do not belong to the same community.259

Scale Similarity, Breakpoint Detection and Natural Scales260
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Let us define a function µP (i, j) that takes the value 1 if both i and j belong to the same subset266

of a partition P , 0 otherwise:267

µP (i, j) =

⇢
1, if 9X 2 P such that i, j 2 X
0, otherwise

(2)

We can then define the similarity of Ps and Ps0 as the ratio between the number of pairs of268

locations in V that have the same value of µ for both Ps and Ps0 (i.e. they are classified similarly269

at scales s and s0), and the total number of possible location pairs:270

�(V, Ps, Ps0) =
|{(i, j) 2 V 2, i 6= j, µPs(i, j) = µPs0 (i, j)}|

�|V |
2

� (3)

Intervals of Similar Scales271
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�B =

P
I2I(B) |I| ·

P
s,s02I �(V, Ps, Ps0)

max
b2B\{b0}

�(V, Pb�1, Pb)
(4)

Intuitively, this is a ratio between the mean similarity within intervals (weighted by the interval282
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no longer be improved. We define a minimum interval size of 5 to avoid isolating noisy outliers. In287

practice, the minimum interval only has an e↵ect on the two cities, for which the very final scales288

are indeed quite noisy.289
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For a given interval I, the natural scale sI is the percentile of I with the partition that is the most291

similar to all other partitions in I. To formalize:292

sI = argmaxs2I

X

s02I

�(V, Ps, Ps0) (5)
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Distance distributions

1.2 Raw distance distributions

In figure S2 we show the distance distributions for the full graph of movement between

locations using log-log scales. Scale discontinuities (presented in the main work in terms of

percentiles) can be seen here in absolute distance space. They are represented by the vertical

red dotted lines.

Figure S2: Distance distributions for all regions, log-log scale. Power law fitting lines are shown

in green (dashed), scale discontinuities in red (dotted).
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Scale-related behaviour, not scale-related users



Take Home
• Digital traces on social media can be mined to infer 

large corpus of human movement data. 

• Geographic communities are scale-dependent. 

• There are ranges of scales where community partitions 
remain similar, interspersed with sudden changes 
(phase transitions). 

• It is possible to find the characteristic scales of a region 
and multi-scale analysis provides insight that would be 
hidden otherwise.
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Natural Scales in Geographical 
Patterns
Telmo Menezes1,* & Camille Roth1,2,3,*

Human mobility is known to be distributed across several orders of magnitude of physical distances, 
which makes it generally difficult to endogenously find or define typical and meaningful scales. Relevant 
analyses, from movements to geographical partitions, seem to be relative to some ad-hoc scale, or no 
scale at all. Relying on geotagged data collected from photo-sharing social media, we apply community 
detection to movement networks constrained by increasing percentiles of the distance distribution. 
Using a simple parameter-free discontinuity detection algorithm, we discover clear phase transitions in 
the community partition space. The detection of these phases constitutes the first objective method of 
characterising endogenous, natural scales of human movement. Our study covers nine regions, ranging 
from cities to countries of various sizes and a transnational area. For all regions, the number of natural 
scales is remarkably low (2 or 3). Further, our results hint at scale-related behaviours rather than scale-
related users. The partitions of the natural scales allow us to draw discrete multi-scale geographical 
boundaries, potentially capable of providing key insights in fields such as epidemiology or cultural 
contagion where the introduction of spatial boundaries is pivotal.

Geographical scaling has been at the core of a wealth of studies of human mobility. On one hand, physical dis-
tances between connected individuals or between related places have repeatedly been shown to hardly obey any 
distinctive scale, let alone exhibit distinct phases. Distance frequencies observed in large geotagged datasets of 
human behaviour usually follow strongly heterogeneous distributions spanning several orders of magnitude, be 
it for links based on cell phone movements1,2 and calls3–5, social media “check-ins”6,7 or postings8, commutes9,10 
or taxi rides11, or circulation of artifacts12. On the other hand, this type of data has more recently been used to 
uncover geographically consistent areas based on clusters of places, movements or interactions4,6,13–20 where, in 
essence, the relevant literature generally proceeds on the assumption that all empirical measurements, irrespec-
tive of their diverse spatial scales, should be taken into account to form a single global picture. The choice of the 
appropriate description scale is left to the beholder: ex ante, when gathering data within a given bounding box, 
and often ex post, by focusing on a proper description scale. Here, behavioural traces spanning several orders of 
magnitudes are typically aggregated independently of the physical scale they correspond to; then, geographical 
areas or patterns are uncovered by community detection algorithms; a final level of description is finally chosen 
according to some criterion. In practice, these methods generally produce dendrograms defining an embedded 
series of geographical partitions, where lower-level partitions include higher-level ones in a continuum of increas-
ingly coarse description scales. An appropriate level of the dendrogram is eventually selected because it either 
maximises some quantity (typically modularity in network-based methods17), yields a clear-cut dichotomy4, or 
best matches some a priori known description scale16. Results are therefore single-scale rather than scale-free: the 
aim generally consists in discovering or, rather, recovering a gold standard geographic partition of a given area 
— such as the partition of Belgium into two linguistic communities4, or the breakdown of administrative regions 
in Great Britain15. While some studies showed that long- and short-distance connections play distinct roles in 
defining clusters17, the quest for an ideal set of clusters which have to be discovered once and for all (and possibly 
aggregated into larger blocks16 until a binary dichotomy is reached4) remains pregnant.

We show here that the choice of observation scales is neither exogenous nor univocal. To this end, we demon-
strate that it is possible to endogenously uncover a small number of meaningful description scale ranges from 
apparently scale-free raw data. In other words, geographical data on human behaviour encloses several coexisting 
and natural phases which we recover despite the absence of scale at the lower level of link distance distributions.

Empirically, we rely on human mobility data stemming from Instagram, an online photo-sharing service tar-
geted at smartphone users. Distributions of link distances between successive user locations are unsurprisingly 
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